

ADAMBOTS Team 245

Review of Motors used for FIRST FRC Robots

Common Motors Used for FIRST FRC Robots

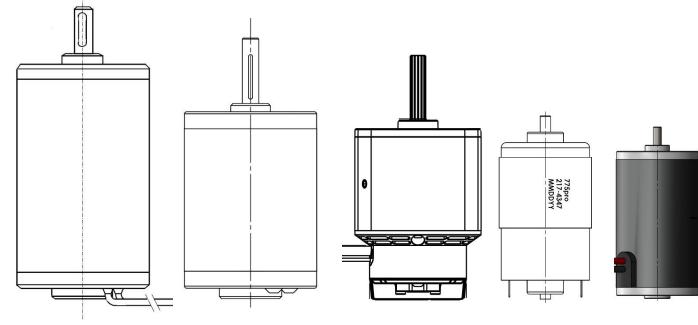
Common motors used for FRC Robot applications:

BAG Motor

775 Motor

Mini CIM

Full Size CIM


Falcon Brushless

Neo Brushless and other motors are not included in this review

Scale Comparison of Motors

Full Size CIM: 5.50" Long 2.52" Dia 2.8 Lbm Mini CIM: 4.95" Long 2.52" Dia 2.16 Lbm Falcon Brushless: 4.57" Long 2.36" Dia 1.10 Lbm

775 Motor: 3.47" Long 1.74" Dia 0.81 Lbm Bag Motor: 3.27" Long 1.59" Dia 0.71 Lbm

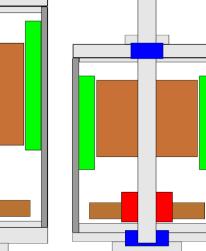
Internal Features of Motors

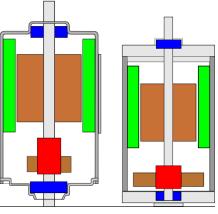
= Shaft / End Caps

= Main Case

= Lamination and Coils

= Brushes


= Power Electronics



= Magnets

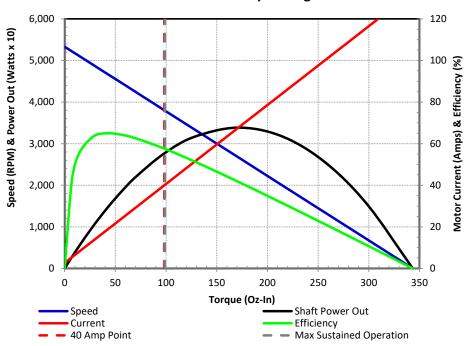
= Plastic Outer Shell

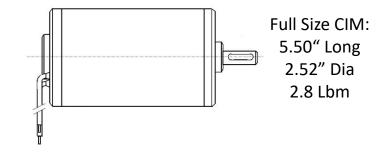
Full Size CIM:

Mini CIM:

Falcon Brushless:

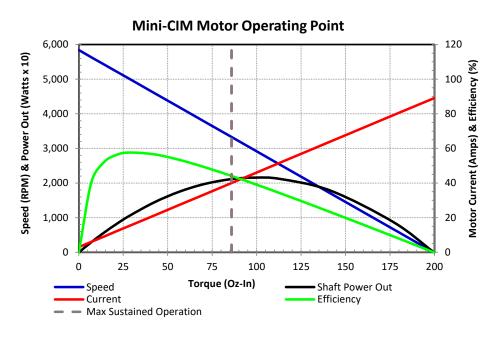
775 Motor:

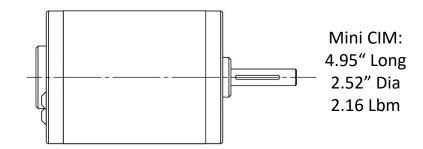

Bag Motor:



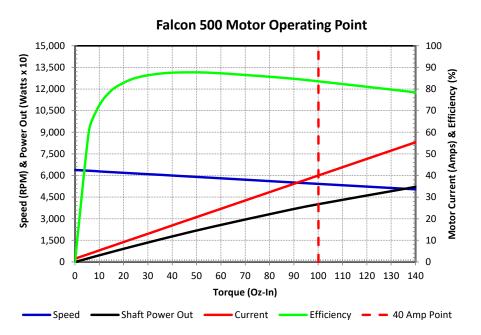
Performance Summary: Full Size CIM

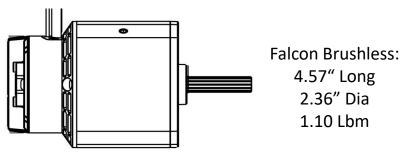
Full Size CIM Motor Operating Point



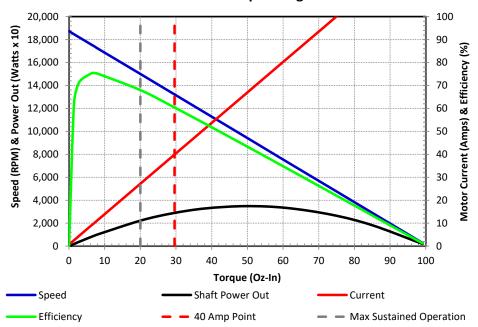

Full Size CIM						
	Free Speed (RPM)	5330		Torque (Oz-In)	170	
12.0 Volt Performance	Idle Current (Amp)	2.7	Performance at Max Power	Speed (RPM)	2692	
	Stall Torque (Oz-In)	343.4		Current (Amps)	67.2	
	Stall Current (Amps)	133	Output	Power Out (Watts)	338	
				Efficiency (%)	42.0	
Performance at Peak Efficiency	Torque (Oz-In)	42.5	Performance at Max Power Continuous Operation	Torque (Oz-In)	98.3	
	Speed (RPM)	4671		Speed (RPM)	3804	
	Current Amps)	18.82		Current (Amps)	40	
	Power Out (Watts)	146.8		Power Out (Watts)	276.7	
	Efficiency (%)	65.0		Efficiency (%)	57.6	

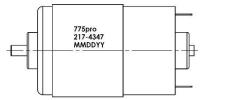
Performance Summary: Mini CIM




Mini CIM							
	Free Speed (RPM)	5840		Torque (Oz-In)	100.6		
12.0 Volt Performance	Idle Current (Amp)	3.0	Performance at Max Power Output	Speed (RPM)	2899		
	Stall Torque (Oz-In)	199.7		Current (Amps)	46.3		
	Stall Current (Amps)	89		Power Out (Watts)	215.7		
				Efficiency (%)	38.8		
Performance at Peak Efficiency	Torque (Oz-In)	31.2	Performance at Max Power Continuous Operation Torque (Oz-In) Speed (RPM) Current (Amps) Power Out (Watt Efficiency (%)	Torque (Oz-In)	85.9		
	Speed (RPM)	4929		Speed (RPM)	3328		
	Current Amps)	16.42		Current (Amps)	40		
	Power Out (Watts)	113.6		Power Out (Watts)	211.5		
	Efficiency (%)	57.7		Efficiency (%)	44.1		

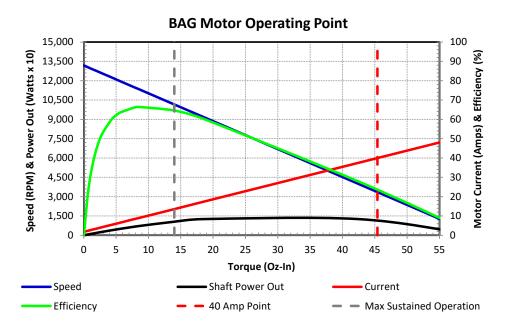
Performance Summary: Falcon 500


Bag Motor						
	Free Speed (RPM)	6380		Torque (Oz-In)	N/A	
12.0 Volt Performance	Idle Current (Amp)	1.5	Performance at Max Power	Speed (RPM)	N/A	
	Stall Torque (Oz-In)	664		Current (Amps)	N/A	
	Stall Current (Amps)	257	Output	Power Out (Watts)	N/A	
				Efficiency (%)	N/A	
Performance at Peak Efficiency	Torque (Oz-In)	46.7	Performance at Max Power Continuous Operation Performance at Max Power (Namps) Current (Amps) Power Out (Watts) Efficiency (%)	Torque (Oz-In)	100.1	
	Speed (RPM)	5931		5419		
	Current Amps)	19.48		Current (Amps)	40	
	Power Out (Watts)	205.1		Power Out (Watts)	401.1	
	Efficiency (%)	87.71		Efficiency (%)	83.6	



Performance Summary: 775 Motor

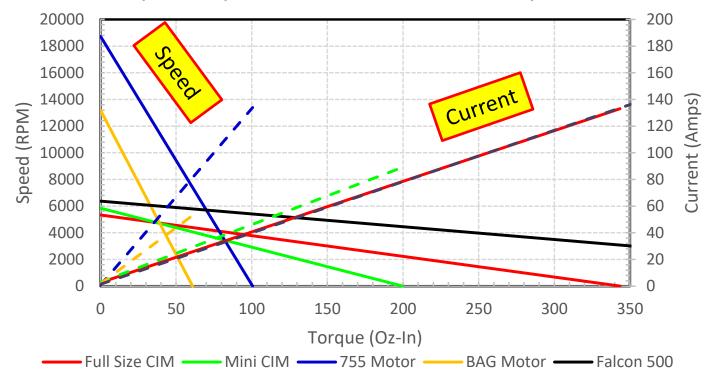
775 Pro Motor Operating Point


775 Motor: 3.47" Long 1.74" Dia 0.81 Lbm

775 Motor						
	Free Speed (RPM)	18730		Torque (Oz-In)	49.6	
12.0 Volt	Idle Current (Amp)	0.7	Performance at	Speed (RPM)	9497	
Performance	Stall Torque (Oz-In)	100.6	Max Power	Current (Amps)	66.41	
	Stall Current (Amps)	134	Output	Power Out (Watts)	348.3	
				Efficiency (%)	43.7	
	Torque (Oz-In)	7.1	Performance at	Torque (Oz-In)	20	
Performance at Peak Efficiency	Speed (RPM)	17411	Max Power Continuous	Speed (RPM)	14997	
	Current Amps)	10.09		Current (Amps)	27.27	
	Power Out (Watts)	91.2		Power Out (Watts)	222.3	
	Efficiency (%)	75.35	Operation	Efficiency (%)	68	

Performance Summary: Bag Motor

Bag Motor: 3.27" Long 1.59" Dia 0.71 Lbm


Bag Motor							
	Free Speed (RPM)	13180		Torque (Oz-In)	29.7		
12.0 Volt Performance	Idle Current (Amp)	1.8	Performance at Max Power	Speed (RPM)	6743		
	Stall Torque (Oz-In)	60.9		Current (Amps)	26.8		
	Stall Current (Amps)	53	Output	Power Out (Watts)	148.4		
				Efficiency (%)	46.1		
	Torque (Oz-In)	9.3	Performance at	Torque (Oz-In)	14		
Performance at Peak Efficiency	Speed (RPM)	11157	Max Power Continuous Speed (RPM) Current (Amps) Power Out (Watts	10150			
	Current Amps)	9.66		Current (Amps)	13.57		
	Power Out (Watts)	77.2		Power Out (Watts)	105.1		
	Efficiency (%)	66.6	Operation	Efficiency (%)	64.6		

Motor Performance Comparison

Torque vs Speed and Current for 12V Operation

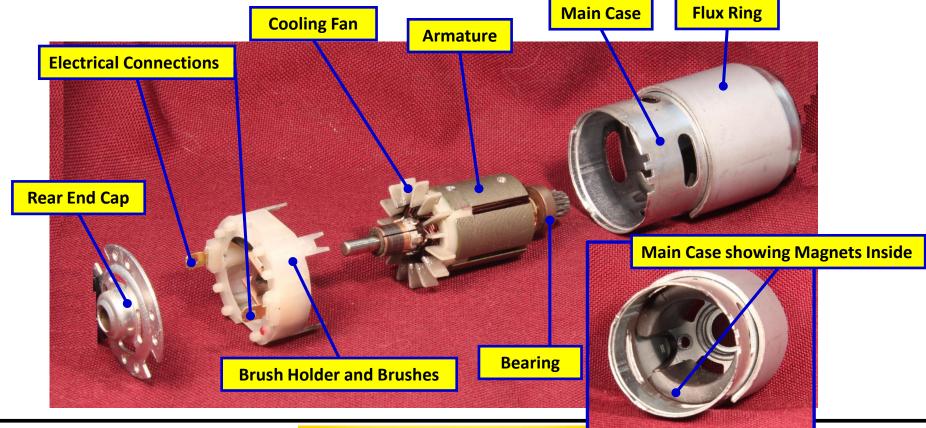
Proper Applications for Different Motor Types

- * Falcon 500 and Full Size CIM motors are best for high torque load, high duty cycle applications
 - * Falcon 500 Brushless motor was designed to be a high efficiency, smaller package size, weight saving drop in replacement for the Full size CIM motor
 - **Good applications for these motors are:**
 - Chassis drive wheels
 - **※** Wheels for shooters
 - **№** Large arm manipulation
- Mini CIM's can also be used for less demanding similar applications

Proper Applications for Different Motor Types

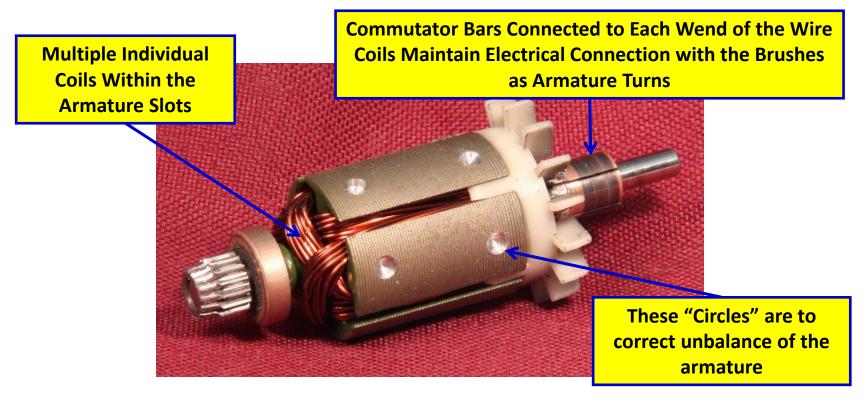
- **775 Motors can be used for intermittent duty cycle applications** with higher torque requirements
 - ***** 775 motors require much higher gear reduction ratios for use.
 - Speeds for 775 motors are 2 to 3x higher than CIM motors at similar working power levels
 - **★ Good applications for these motors are:**
 - **№** Belt drive systems for game piece manipulation
 - Robot climbing application often using 2x motors driving same output shaft

Proper Applications for Different Motor Types

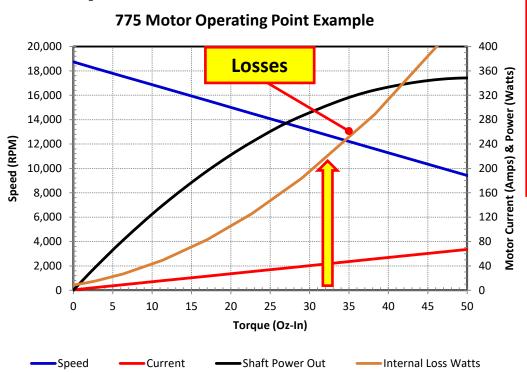


- **BAG Motors can be used for intermittent duty cycle applications with lower torque requirements**
 - **BAG** motors will also require high gear reduction ratios for use.
 - Best paired with Versa Planetary gear systems
 - **Good applications for these motors are:**
 - **Lower torque drives for wheels used to input game pieces**

Motor Internal Structure: 775 Motor Example



Motor Internal Structure: 775 Motor Armature



Losses Within the Motor As Function of Operating

Torque

Losses within the motor increase with increasing motor torque and current levels

Majority of losses or temperature gain occur in armature coil wires and the commutator/brush interface

Heat Rejection Paths from Motor Itself

Cooling Fan

- Primary cooling method for 775 is cooling airflow drawn through motor by internal cooling fan
 - Higher motor speeds increases motor cooling airflow
 - * Higher speeds also increases heat transfer within motor internal components
- Secondary cooling method is conductive heat transfer through motor case, end caps, and shaft

Cooling Air Exit

Motor Overheating Failure Mode

- Motor temperatures escalate when rate of heat generation within motor exceeds capacity for heat rejection from the motor
 - Varnish insulation on magnet wire coils is the initial failure point in the motor
 - Wire temperature exceeds temperature rating of varnish insulation causing it to soften and bubble allowing individual wire coils to make contact and short together causing motor to run slower, increase current draw, which further increases wire temperature that leads to progressive failure of entire motor
 - * Smoke often seen from an overheated motor comes from overheated varnish
 - A Smoking motor is not always a Dead Motor. Varnish can smoke for some time before adjacent wire coils begin to short if power is removed before permanent damage
 - Any Non-Brushless motor will eventually overheat if subject to stall operation for a long period of time

Key Failure Mode Related to Operating at

Excessive Current/Torque Levels

Temperature within armature exceeds

Max rating of varnish insulation coating used on wire coils

Blackened Wire Insulation

 $\frac{1}{1}$

Failure of wire insulation results in Electrical shorts between adjacent coils that reduces speed, increases current draw, which further increases temperature that accelerates failure of motor

This temperature related failure releases the "Blue Smoke" often seen when motors fail

This is a motor that has experienced failure due to breakdown of wire insulation

Limits of Motor Operating Torque

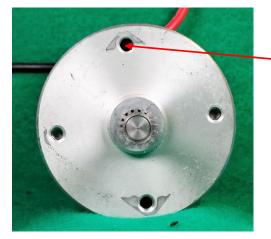
- Maximum operating torque or current draw for continuous or intermittent duty cycle is a function of motor design elements and overall sizing
 - Smaller diameter wire in armature coils has a lower maximum current density limit (Amps per Sq-Millimeter) than larger diameter wire
 - Larger diameter wire has higher surface are and can more easily reject heat from resistance related losses
 - **Wire used in CIM motors is much larger diameter than BAG and 775 motors**
 - Larger diameter motors also have larger external surface area that increases capability to reject heat
 - *** 775 Motor can achieve higher operating power levels due to internal cooling fan that is not present in larger, similar power motors**

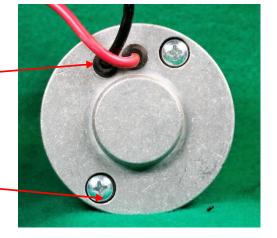
Operating Current Levels for FIRST Motors

- Full Size CIM and Falcon 500 motors can run for full 2 ½ minute match time at 40 Amp Current without suffering damage from internal heating
 - Motors will get "Warm", and may loose some performance, but will generally not suffer permanent damage
 - Motor performance does decrease with higher motor temperature. This is why FIRST allows 6 Minutes for motors to cool down between matches during the finals

Operating Current Levels for FIRST Motors

- **₹ 775 and Mini-CIM Motors can run intermittently at 40 Amp levels without suffering damage during 2 ½ minute match time**
 - Short term 10 Second climb once per match is a good application for
 40 Amp operating point with these motors
 - Design at 40 Amp operating point is not a good practice since this is too close to 40 Amp circuit limit
- **Should use a longer term current draw limit of 25 Amps for 775** motors within 2 ½ minute match duration
- **BAG Motors should use a 13 Amp limit for longer term current draw limit during a 2 ½ minute math duration**


Internal Structure of Full Size CIM Motor



4x Mounting screw locations in front end cap

Rubber grommet sealing motor leads

Through Bolts Holding Motor
Together

Details of Brush Card of Full Size CIM Motor

Brass Brush box keeps brush in position as brush wears away

Brush Springs keep brush in contact with commutator as brush face wears away with use

Non-Conductive base plate

Mounting Screws

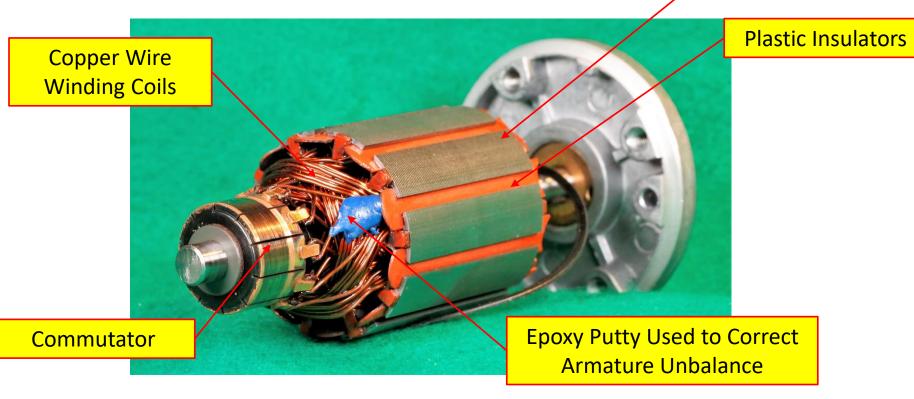
Flexible Brush
shunt conducts
current from leads
to brush as brush
wears away

Brushes conduct
current to
commutator bars.
These wear away
with use

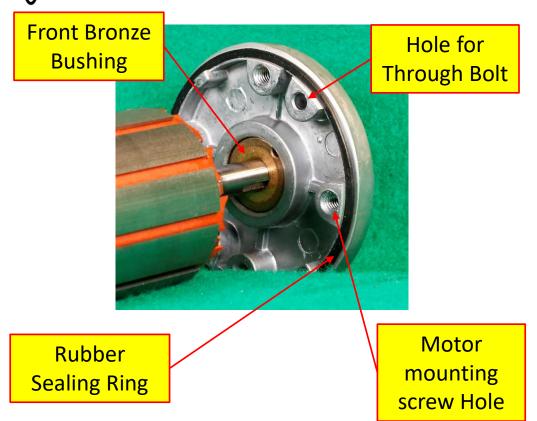
Brush Card and Rear End Cap: Full Size CIM

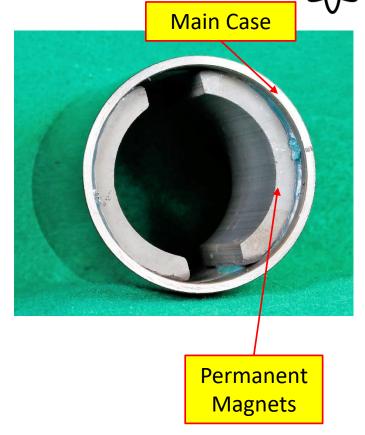
Brush Card fastened to rear end cap by 4x screws

Front & Back of Brush Card

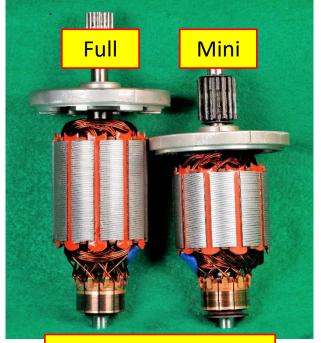

Rear end cap with sintered bronze bushing and rubber sealing ring

Armature Detail: Full Size CIM

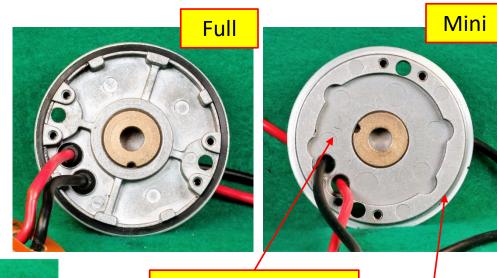

Steel Laminations



Front End cap & Case/Magnet: Full Size CIM



Mini CIM Motor


Mini-CIM is a shorter version of Full Size CIM

Different End Cap Design

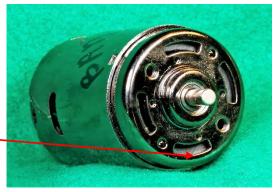
Same Components
Just Shorter

No Rubber Sealing Ring



775 Motor

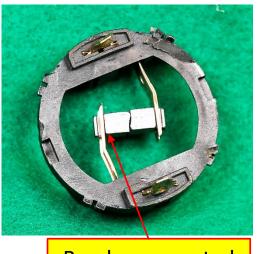
Cooling Airflow
Outlet



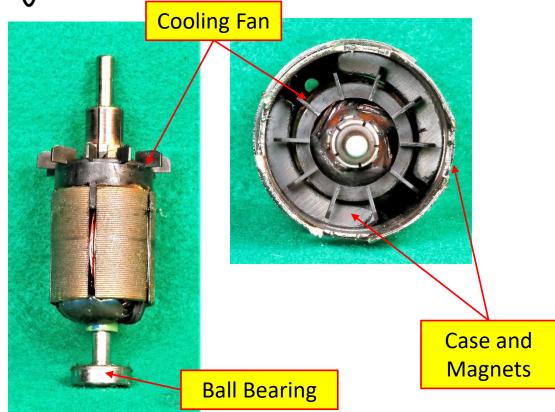
Motor Connectors are very small

Cooling Airflow Inlets on both Front and Back End caps

Brush Assembly: 775 Motor



Brushes on Commutator


Connector and cantilever spring are one part

Brushes mounted directly on cantilever Springs

Brush Assembly: 775 Motor

This motor has Burned Armature Windings

BAG Motor

Case Construction Similar to CIM Motors

Back

Through Bolts

Front

BAG Motor

Photos From a Motor with a Burned Armature

Brush Card Construction
Similar to CIM Motors

Ball Bearing

Burned Armature Winding Coils

Condensed Residue from
Overheated Winding
Insulation

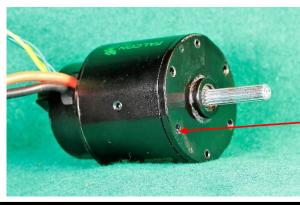
BAG Motor Armature

Photos From a Motor with a Burned Armature

Armature
Construction
Similar to CIM
Motors

Laminations are Skewed as opposed to Straight as on CIM Motor in effort to reduce Vibration/Noise coming from interaction with magnetic field

Falcon 500 Brushless Motor

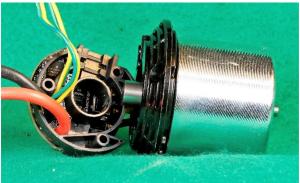

Controller is Integrated with Motor

Spline Shaft
Unique to
Falcon

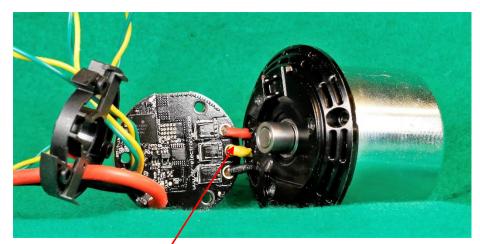
4x Mounting Screw Holes

Falcon 500 Brushless Motor

Plastic Cover Removed


Rotor Cup with Shaft
Attached

Power Electronics Located
Inside Back Cover



Motor has "Inside Out"
Architecture. Windings and
laminations are fixed and Magnet
/Steel rotor rotate around fixed
copper windings

Falcon 500 Brushless Motor

Power Leads for 3-Phase Winding from Electronic package to Fixed coils inside stator

High Energy Product Neodymium

Magnets bonded to inside of rotor

cup. One reason for higher

efficiency and lower weight

Benefits of Brushless Motors

- **Significantly higher operating efficiency**
 - **CIM** at 200 Watt power out is 63% Efficient
 - * Falcon 500 at 200 Watt power out is 87% Efficient
 - **№** Savings of 7 Amps at same output power level
- Lower Motor only Weight
 - **CIM** motor = 2.8 Lbm Falcon = 1.1 Lbm 1.7 Lbm Savings
- Additional mass and weight savings
 - Motor controller is integrated inside brushless motor that saves packaging space on electronics board and provides additional 0.26 Lbm weight savings

Benefits of Brushless Motors (Continued)

- **Brushless motor controller offers stall protection**
 - Motor will shut down if presented with a stall condition and will not overheat
- Lower rotating inertia provides quicker acceleration compared to CIM motors
- Brushless motor system provides feedback of rotor speed and can maintain exact command speed
 - **No need for stand alone encoders**
 - **CIM Brush DC motor cannot achieve target command speed without external encoder bases sensor PID loop**
 - **Critical for control of shooter wheel speed to control shot distance**

Benefits of Brushless Motors (Continued)

- **Can run longer without needing to cool motor due to higher efficiency**
- * Falcon brushless motors have advantage compared to Neo motors due to integrated power electronics which eliminates need for separate controller on electronics board
- **Image: Secont of the Second of the Second**